$rag.chat.retrieveChunksFromChat
The method returns chunks relevant to the user’s query from a knowledge base chat.
caution
The method is available only in the ECMAScript 6 runtime and is asynchronous.
Syntax
The method accepts the following arguments:
Argument | Type | Description | Required |
---|---|---|---|
secretName | String | Name of the knowledge base secret. | Yes |
chatId | Integer | Chat identifier. Use the identifier returned by the$rag.chat.create method. | Yes |
query | String | Text of the user query. | Yes |
settings | Object | Chunk search settings. By default, the settings from the chat are used. Thesettings format matches the format of the identically named object in the POST /api/knowledge-hub/chat/{chatId}/retrieve request in the Tovie Data Agent API. | No |
timeout | Number | Timeout in milliseconds for the method execution. If the timeout is exceeded, an error will occur. By default, the timeout is not set. | No |
- Positional arguments
- Via object
Specify the arguments in order:
await $rag.chat.retrieveChunksFromChat("MyKnowledgeHub", 12345, "What does the Example service do?", undefined, 5000);
Pass an object whose fields match the names of the arguments:
await $rag.chat.retrieveChunksFromChat({
secretName: "MyKnowledgeHub",
chatId: 12345,
query: "What does the Example service do?",
timeout: 5000
});
Return value
The method returns an object with a list of chunks. They are sorted in descending order of relevance.
{
"chunks": [
{
"score": 0.7486038,
"content": "The Example service processes user requests …",
"docId": "Documentation.pdf",
"metadata": null
},
{
"score": 0.7337575,
"content": "The Example service can handle high loads …",
"docId": "Services.pdf",
"metadata": null
}
]
}
The object has the same format as the response to the POST /api/knowledge-hub/chat/{chatId}/retrieve
request in the Tovie Data Agent API.
How to use
state: Chunks
intent!: /question
scriptEs6:
$client.chat = $client.chat || await $rag.chat.create("MyKnowledgeHub");
const chunks = await $rag.chat.retrieveChunksFromChat("MyKnowledgeHub", $client.chat.id, $request.query);
$reactions.answer(chunks.chunks[0].content);
In this state:
- If there is no chat yet, the bot creates a chat.
- The bot sends the most relevant chunk to the user.